UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9700 BIOLOGY

9700/42 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

> UNIVERSITY of CAMBRIDGE International Examinations

	Ра	ge 2			heme: Teachers' v		Syllabus	Paper
				GCE AS/	A LEVEL – May/Jui	ne 2010	9700	42
1	(a)	1	more	e nests in, areas o	f low salinity/less sa	lty areas; ora		
		2	com	ment about result	for salinity 16-20 no	t following trend	;	
		3	2 pa	ired figs with units	; linked to 1			[3]
	(b)	(i)	(<u>31 -</u> 8	<u>– 8</u>) (× 100)				
			287.	.5/288 ;;				
			allov	w one mark for suit	table working if inco	rrect answer		[2]
		(ii)	any	two from				
			1	(ensure) low salini	ity or more freshwat	er;		
			2	nest sites protecte	ed;			
			3	education/ecotour	ism ;			
			4	assisted breeding	,			
			5	ban on hunting ;				
			6	preventing pollution	on;			[2 max]
								[Total: 7]
2	(a)	1	rece	eptor or binding site	e not, complementar	y/ <u>specific</u> , to FSI	Н;	
		2	FSH	I has shorter β cha	in than LH ; ora			
		3	FSH	I has different, prin	nary structure/seque	ence of amino ac	ids ;	
		4	FSH	I has different, tert	iary structure/3D sha	ape ;		[3 max]
	(b)	(i)	follic	cle (cells) ;	A granulosa (cells)			[1]
		(ii)	corp	ous luteal (cells) ;	A granulosa (cells)			[1]
	(c)	1	(bind	ding to a receptor)	, acts as a signal to	the cells/stimulat	es cells ;	
		2	to, s	tart/increase, <u>synt</u>	hesis of hormone;	A cells start to d	ivide	
		3	<u>oest</u>	rogen secreted ;		A mature follicle	formed (oestrog	en),
		4	stim	ulates thickening o	of endometrium/inhit	oits FSH (product	tion);	[3 max]
								[Total: 8]

Pa	ge 3		Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010	Syllabus 9700	Paper 42
(a)	1	peni	icillin inhibits enzyme ; ignore name of enzyme	·	
	2	pept	tidoglycan chains cannot link up/stops cross-links formi	ng;	
	3	cell	wall becomes weaker/AW ;		
	4	turgo	or of cell not resisted (by cell wall)/AW ;		
	5	cell/	wall, bursts ;		[3 max]
(b)	(i)		as, an outer membrane/channel proteins ; as thinner (peptidoglycan) wall ; <i>accept ora for A</i>		[2]
	(ii)	1	penicillin V can reach the, wall/(cell surface) membran	e, of A; ora	
		2	outer membrane of B stops penicillin V getting through	i; ora	
		3	penicillin V cannot get through pores of outer membrar	ne of B ;	[2 max]
	(iii)		penetrate outer membrane ; ugh pores/directly through as non-polar ;		[2]
(c)	bat	ch cu	lture		
	1	set u	up and allowed to proceed ;		
	2	nutri	ients not added or products removed, (during fermenta	tion);	
	3	air a	llowed in/waste gas allowed out ;		
	4	at er	nd of each process, product harvested/fermenter clean	ed out; max 2	
	con	tinuo	us culture		
	5	nutri	ients added (all the time);		
	6	prod	lucts removed (all the time) ;		
	7	no d	lown time/AW;	max 2	[3 max]
(d)	1		<i>nicillium</i> /fungus), does not make penicillin all the time/p les of growth ;	enicillin is made	in the later
	2	whe	n beginning to run out of nutrients ;		
	3	(pen	nicillin) is a <u>secondary</u> metabolite ;		
	4	cont	inuous culture has no yield of penicillin ;		
	5	cont	inuous culture, never reaches stationary phase of growt	h/always expone	ntial growth; [3 max]

[Total: 15]

Pa	ge 4		Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2010	Syllabus 9700	Paper 42
(a)	1	can	be grown in many different environments/AW ;	ι <u> </u> ι	
()	2		ins) contain variety of nutrients; A list of 3+ nutrients		
	3		ail of nutrient content ; e.g. high in calcium/vitamin B/pr	otein	
	4		ins) have high, energy/fibre, content ;		
	5		ins) store well ;		[3 ma
		10			L
(b)	(i)	end	osperm;		[
	(ii)	1	both rise and then fall ;		
		2	sorghum (enzyme) has higher activity (at all temperate	ures);	
		3	sorghum (enzyme) has higher maximum activity;		
		4	sorghum (enzyme) has higher optimum temperature ;	A 70° and 60°	
		5	comparative figures to illustrate points 2 or 3;		[3 ma
	(iii)	1	(rice) tertiary structure/active site, of amylase is altered	d more by high te	emperature;
		2	(therefore) fewer ES/enzyme-substrate complexes for	med/AW;	
		3	high temperatures affect H bonds (more than other bo	onds);	
		4	amylase in rice may have more H bonds; ora		
		5	correct ref. to other named bond ;		[3 ma
(c)	(i)	1	higher CO ₂ uptake at higher light intensity; ora		
		2	comparative figures; using columns 1 and 2		
		3	CO ₂ used in, Calvin cycle/light independent reaction ;		
		4	photophosphorylation/light dependent stage provides,	ATP/reduced NA	ADP;
		5	for use in, Calvin cycle/light independent reaction ;		
		6	light is a limiting factor;		[3 ma
	(ii)	1	survive better at low light intensities ;		
		2	comparative figures; using columns 1 and 6		[
					[Total: 1

Pa	ige 5	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE AS/A LEVEL – May/June 2010	9700	42
(a)		ergence values less for <i>persimilis</i> than for <i>pseudoobs</i> of figures ;	cura (at all DNA region	s) ; ora [ź
(b)	1	some regions of DNA more prone to mutation than	others;	
	2	mutation in some regions likely to be fatal (so not se	en in populations) ;	
	3	there tends to be less divergence if DNA is part of a	n important gene/ ora ;	
	4	detail ; e.g. causes change in essential protein		[2 ma
(c)	1	<u>allopatric</u> speciation;		
	2	geographical/physical, barrier;		
	3	no, breeding/gene flow, between populations;		
	4	mutations occur;		
	5	different selection pressures/different (environmenta	al) conditions ;	
		genetic change ; e.g. different alleles selected for/ gene pool/advantageous alleles passed on ;	change in allele freque	ncy/change
	7	genetic drift;		
	~		-1 -	[4] 100 0

8 (ultimately) cannot interbreed/reproductively isolated ; [4 max]

[Total: 8]

Pa	ge 6							achers' ve			Sylla			per
				GCE	AS/A	LEV	EL -	- May/Jun	e 2010		97	00	4	2
(a)	1	allele	e/gene,	found	on X	chro	mos	ome;						
	2	fema	ales hav	e two	copie	s of,	allel	e/gene ;						
	3	male	es have	only o	ne co	py of	f, alle	ele/gene;						[2 max
(b)	key	to sy	mbols											
	rece	essive	e allele	Х ^а ((= alle	le fo	· CI)							
	don	ninan	t allele	X ^A	(= alle	ele fo	r noi	rmal iris) ;						
	cro: par		phenoty	vpes		male	with	n CI/cleft iri	s a	and no	ormal fe	male ;		
	gan	netes				Xª	or	Y			all X ^A	;		
	offs	pring	genoty	pes				X^AX ^a		Х ^ѧ Ү;				
	offs	pring	phenoty	ypes			nor	mal femal	e	normal	male ;			
								or						
		ss 2	phenoty	 /nas		m	ماد ب	vith CI/clef	· irie	and	norm	al female	e ;	
				pes			or		. 1113	anu	X ^A or		σ,	
	-	netes					or							
	offs	pring	genoty	bes	X'	^А Х ^а		X ^A Y		X ^a X ^a		XªY	';	
	offs	pring	phenoty	ypes	norm fema			normal male		cleft iri female		cleft male	iris/CI ;	[5
offs	nrina	n nhe	notvnes	must	be lir	ked	to ar	enotypes						

(c) 1 in 4/25%/0.25 ; **R** ratios

[1]

[Total: 8]

Р	age T	7	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2010	9700	42
7 (a)) (i)		noval of, carbon dioxide/carboxyl group ; noval of hydrogen ;		[2]
	(ii)	P a	nd Q ;		[1]
(b) (i)	3;			[1]
	(ii)	1	inner mitochondrial membrane/cristae;		
		2	dehydrogenase enzymes;		
		3	release hydrogen ;		
		4	hydrogen splits into protons and electrons;		
		5	electrons flow down, ETC/Electron Transfer Chain/AW	;	
		6	energy released;		
		7	protons pumped across (inner membrane);		
		8	into intermembrane space ;		
		9	proton gradient ;		
		10	protons pass through, ATP synthase/stalked particles		
		11	ATP formed ; <i>linked to 10</i>		
		12	oxygen (final), hydrogen/proton and electron, acceptor	; max 4	[5 max]
(c)) 1	pyr	uvate converted to <u>ethanal</u> ;		
	2	<u>eth</u>	anal reduced ;		
	3	by ı	reduced NAD ;		
	4	NA	D, oxidised/regenerated ;		
	5	allo	ws glycolysis to continue ;		
	6	<u>eth</u>	anal dehydrogenase;		
	7	<u>eth</u>	anol formed ;		
	8	pre	vents H^+ from lowering pH ;		[4 max]

Pa	ge 8		Mark Scheme: Teachers' version Syllabus	
			GCE AS/A LEVEL – May/June 2010 9700	42
(d)	1	no,	decarboxylation/carbon dioxide removed ; A ora	
	2	sing	gle step ;	
	3	lact	tate dehydrogenase;	
	4	rev	ersible ;	[3 max]
				[Total: 16]
(a)	(i)	1	change in, genetic material/DNA, (in cell) ;	
		2	(therefore) change product of cell;	
		3	during protein synthesis;	[2 max
	(ii)	1	identification of transformed, cells/organisms;	
		2	avoid use of antibiotics;	
		3	easy to detect ;	
		4	no known ill effect on GM organism ;	[2 max]
(b)	(i)	1	reduces deficiency disease/AW;	
		2	better quality food;	
		3	assistance to developing nations/AW;	
		4	cheap seed ; e.g. for golden rice	[2 max
	(ii)	1	high cost of GM seed ;	
		2	too much power held by multinational companies;	
		3	change to ecosystem; e.g. hybridisation	
		4	GM crops may be difficult to sell ;	
		5	GM plant varieties may be genetically unstable;	
		6	no long term studies done on effects on human health ;	
		7	reduction in biodiversity/outcompetes natural variety or species;	[2 max
				[Total: 8]

PMT

Ρ	age 9	•	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2010	9700	42
(a)) 1	arrar	nged in light harvesting, clusters/system ;		
	2	prim	ary pigments/chlorophyll a ;		
	3	at re	action centre;		
	4	P700	0/P1, absorbs at 700(nm) ;		
	5	P680	0/P11, absorbs at 680(nm) ;		
	6		essory pigments/chlorophyll b/carotenoids, surround, re/ chlorophyll a ;	primary pigment/r	eaction
	7	pass	s <u>energy</u> to, primary pigment/reaction centre/chloroph	yll a ;	
	8	P700	0 / PI, involved in cyclic photophosphorylation ;		
	9	(light	t absorbed results in) electron excited/AW;		
	10	emit	ted from, chlorophyll/photosystem ;		
	11	flows	s along, chain of electron carriers/ETC ;		
	12	ATP	synthesis ;		
	13	elect	tron returns to, P700/P1 ;		[8 ma
(b) 14	<u>phot</u>	olysis (of water);		
	15	relea	ases H⁺ ; <i>R H/hydrogen atoms</i>		
	16	by, F	P680/PII ;		
	17	e re	leased ;		
	18	by, F	P700/PI;		
	19	both	combine with NADP;		
	(re	duced	I NADP)		
	20	redu	ices, GP ; A PGA		
	21	to TF	P; A PGAL / GALP		
	22	ATP	used;		
	23	NAD	P, regenerated/oxidised;		[7 ma
					[Total: 1

ge 10		Mark Scheme: Teachers' versionSyllabusGCE AS/A LEVEL – May/June 20109700							
	[9700	42						
1	nucle	eus in cell body ;							
2	(long) dendron ; R plur	al						
3	(sho	rter) axon ;							
4	man	y mitochondria (in c	ell body) ;						
5	man	y RER/nissl's granu	ıles, (in cell body) ;						
6	syna	ptic knobs ;							
7	deta	il of synaptic knob ;							
8	(tern	ninal) dendrites ;							
9	Schv	vann cells ;							
10	deta	il of myelin sheath ;							
11	nod	es of Ranvier ;							
acce	ept po	oints on labelled dia	agram		[7 max]				
12	Na ⁺ channels <u>open</u> ; A sodium channels								
13	Na ⁺ enter cell ; R enter membrane								
14	inside becomes, less negative/positive/+40mV or membrane depolarised;								
15	Na ⁺ channels <u>close</u> ; A sodium channels								
16	6 K ⁺ channels <u>open</u> ; A potassium channels								
17	K^{+} move out (of cell); R of membrane								
18	insid	e becomes negativ	e or <u>membrane</u> repolarised; A r	negative figure <i>max 5</i>					

19 local circuits/description;

Page 10

10 (a) 1

(b) 12 Na⁺ channels open ;

- 20 (myelin sheath/Schwann cells) insulate axon/does not allow movement of ions;
- 21 action potential/depolarisation, only at nodes (of Ranvier)/gaps;

- 22 saltatory conduction/AW;
- 23 one-way transmission;
- 24 AVP; e.g. hyperpolarisation/refractory period [8 max]

[Total: 15]